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While melting in two and three dimension is substantial different, the glass transition in 
two and three dimensions is usually described with similar methods. Computer 
simulations recently observed fundamental differences in glassy dynamics, depending on 
dimensionality. Mermin-Wagner fluctuations can explain such differences without 
changing the microscopic pictures in 2D and 3D glass. 
 

For structural phase transitions it is well known that the microscopic mechanisms driving the 
structural changes in two and in three dimensions are not the same. While 3D systems 
typically show first order transitions with phase equilibrium and latent heat, 2D systems melt 
via two steps with an intermediate hexatic phase. Unlike in 3D, translational and 
orientational symmetry are not broken at the same temperature. The scenario is described 
within the so called KTHNY-theory [1-4] and confirmed e.g. in colloidal monolayers [5]. 
However, for the glass transition it is usually assumed that dimensionality does not play a 
role for the characteristics of the transition and 2D and 3D systems are used synonymously.  
In a recent manuscript, E. Flenner and G. Szamel report fundamental differences of glassy 
dynamics in two and in three dimensions by large scale computer simulations [6]. They 
report transient localization to be absent in 2D and translational and orientational 
correlations times to decouple in 2D but not in 3D. 
 
I propose Mermin-Wagner fluctuations [7,8] (sometimes called Peierls instabilities) to 
explain the phenomena observed by E. Flenner and G. Szamel. While Mermin-Wagner 
fluctuations are usually discussed for structural properties they have also impact on 
dynamical quantities. What are Mermin-Wagner fluctuations? Long before 2D melting 
scenarios were discussed, there was an intense debate whether crystals and perfect long 
range order can exist in 1D or 2D at all [9]. A beautiful argument was given by Peierls [9]. 
Consider a 1D chain of particles with nearest neighbor interaction. The relative distance 

fluctuation between particle n and particle n+1 at finite temperature may be . Similar is the 
fluctuation between particle n+1 and n+2. Thus the relative fluctuation between particle n 

and n+2 is √2x since the relative fluctuations add up statistically independently if second 
nearest neighbor interaction can be ignored. Thus the amplitude of the fluctuations grows 

with is √𝑁x if N gives the numbers of particles in the chain. Therefore periodicity cannot 
exist at large scales in 1D crystals.  

 
Fig 1: Numbers of ways to cover space in various dimensions. In 1D fluctuations can add up 
independently while in 3D they have to be correlated along the six different path from 0 to 3. 



 

To cover 3D space one has to investigate three linear independent directions, e.g. within a 
cube there are six ways to get along the space diagonal say, from the lowest, left, front 
corner to the upper, right, back corner (see Fig. 1). It follows that in 3D the fluctuations 
cannot add up independently and the amplitude of the fluctuations stays finite being of the 

order of . In 2D one can show that fluctuations add up logarithmically at finite 
temperatures, translational correlation functions decay algebraically while, and this is 
important to note, orientational order is not affected [7-10].  
 
Mermin-Wagner fluctuations are long(est) wavelength density fluctuations and having a 
closer look at the arguments [7-10] one finds that periodicity is not a requirement for those 
fluctuations. They will also be present in an amorphous low dimensional system, provided 
the fact that a typical particle distance exists (unlike e.g. in a gas). With respect to dynamic 
measures, Mermin-Wagner fluctuations cause the mean square displacement to diverge in a 
defect free 2D solid and the standard Lindemann parameter to fail [10,11]. Fig. 2 shows the 
mean square displacement (MSD) of a hexagonal 2D crystal consisting of ~2.000 colloidal 

particles confined at an interface. The field of view is 620x830m2 while the whole system is 
much larger consisting of 300.000 particles. Using local coordinates as introduced by 
Bedanov, Gadiyak, and Lozovik [12], namely subtracting the trajectories of the nearest 
neighbors, the so called reduced or local MSD stays finite in a 2D crystal but still diverges in 
the fluid. This defines a dynamic Lindemann criterion in 2D [12-14]. In the language of glass 
theory, the nearest neighbors are given by the cage and the ‘cage-relative mean square 
displacement’ was shown to have much more contrast e.g. for dynamical heterogeneities in 
a 2D glass former compared to standard displacements [15,16]. It is extreme sensitive to a 
cage escape process and can measure structural rearrangements but ignores long 
wavelength fluctuations.  
 

 
 

Fig 2: Mean square displacement of a defect free crystal (Melting is at  = 60 and the average 

interparticle distance is about  15m). On larges scales and infinite times, even a 2D crystal has fluid-
like character while using cage-relative coordinates the so called ‘dynamic Lindemann-parameter’ 
stays finite [11]. 



 

Comparing standard MSD and cage relative MSD we observe that Mermin-Wagner 

fluctuations contribute as an additional diffusive mechanism to the MSD within the -
relaxation. Their existence is not limited to low dimensional crystals but will also appear in 
amorphous solids at finite temperatures.  
Mermin-Wagner fluctuations can explain the differences in orientational relaxation times (not 
affected by those fluctuations) and translational relaxations times (affected by those fluctuations) 
observed by E. Flenner and G. Szamel [6]. Furthermore, Mermin-Wagner fluctuations exist on large 
scales and the local effect (within the size of the ‘cage’) is only an affine translation. Thus cage-
escape mechanisms and the disappearance of the cage within the fluid are not influenced by 
Mermin-Wagner fluctuations. Therefore we can conclude that the microscopic mechanism of 2D and 
3D glass transition is not necessarily different while the transient localization measured by global 
variables is less pronounced in 2D compared to 3D. 
 

[1] J.M. Kosterlitz, D.J. Thouless: Long-Range Order and Metastability in 2-Dimensional Solids 
and Superfluids. J. Phys. C, 5, 124 (1972) 
[2] J.M. Kosterlitz, D.J. Thouless: Ordering, Metastability and Phase-Transitions in 2 
Dimensional Systems. J. Phys. C, 6, 1181 (1973) 
[3] D.R. Nelson, B.I. Halperin: Theory of 2-Dimensional Melting. Phys. Rev. Lett., 41, 121 
(1978) 
[4] A.P. Young: Melting and the Vector Coulomb Gas in 2 Dimensions. Phys. Rev. B, 19, 1855 
(1979) 
[5] P. Keim, G. Maret, H.H. von Grünberg: Frank's constant in the hexatic phase. Phys. Rev. E, 
75, 031402 (2007) 
[6] E. Flenner, G. Szamel: Fundamental differences between glassy dynamics in two and 
three dimensions. Nat. Commun., 6, 7392 (2015) 
[7] N.D. Mermin, H. Wagner: Absence of Ferromagnetism or Antiferromagnetism in One- or 
2-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett., 17, 1133 (1966),  
[8] N.D. Mermin: Crystalline Order in 2 Dimensions. Phys. Rev., 176, 250 (1968) 
[9] L.D. Landau: Theory of phase transformations II. Phys. Z. Sowj. 11, 545 (1937) 
[10] R.E. Peierls: Bemerkungen über Umwandlungstemperaturen. Helv. Phys. Acta, 7, 81 
(1934),  
[11] J. Frohlich, C. Pfister: On the Absence of Spontaneous Symmetry-Breaking and of 
Crystalline Ordering in Two-Dimensional Systems. Comm. Math. Phys., 81, 277 (1981) 
[12] V.M. Bedanov, G.V. Gadiyak, Y.E. Lozovik: On a modified Lindemann-like criterion for 2D 
melting. Phys. Lett. A, 109, 289 (1985) 
[13] X.H. Zheng, J.C. Earnshaw: On the Lindemann criterion in 2D. Europhys. Lett., 41, 635 
(1998) 
[14] K. Zahn, G. Maret: Dynamic criteria for melting in two dimensions. Phys. Rev. Lett.: 85, 
3656 (2000) 
[15] S. Mazoyer, F. Ebert, G. Maret, P. Keim: Dynamics of particles and cages in an 
experimental 2D glass former. Europhys. Lett., 88, 66004 (2009),  
[16] S. Mazoyer, F. Ebert, G. Maret, P. Keim: Correlation between dynamical heterogeneities, 
structure and potential-energy distribution in a 2D amorphous solid. Euro. Phys. J.E, 34, 
11101 (2011) 
 


